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ON STABILITY IN THE PRESENCE OF MULTIPLE RESONANCE OF ODD ORDER™

V. E. ZHAVNERCHIK

The stability of the trivial solution of an autonomous system of ordinary different-
ial equations is investigated in the critical case of » pairs of pure imaginary roots
when odd-order multiple resonance is present, All possible cases of the presence of
a third-order double resonance are examined for a canonic system. The stability
problem for the relative equilibrium of a satellite on a circular orbit is analyzed
as an example.

1. wWe consider the differential equation system

r=Az+X{2), X0 =0 z&E,, (1.1)
where A is a constant square matrix having only pure imaginary and distinct eigenvalues
+iog(w, >0, 5=1,...,n), X(z)is a holomorphic vector-valued function whose expansion 1in

powers of z begins with an mth-order form, m is an even number. We assume that system (1.1)
has p -ple internal resonance of order (m-+1), i.e., all possible resonance relations of the
form

Q=(on ..., 00, Py=_(pviy- ., Py g 1

q
|Pol =2 |pil=h k=m+1
]-
are fulfilled, where P, is an integral vector whose components do not contain a common factor.
For definiteness we can take it that the first nonzerc component of vector P, is positive.
The stability problem for the trivial solution of system (l1.l) was investigated in /1=3/
in the presence of u-ple rescnance (1.2) satisfying the condition

Py =0, v=1,...,n (1.2)

Dot = (=D ipy >0, v=1....,4 f=1,...,¢ (1.3)

for certain ay, B; taking value 1 or 2. Below we examine this same problem without constraints
(1.3). A special case of such a problem was analyzed earlier in /4/. With the aidof aspecial
nonlinear transformation taking (1.2) into account the system (1.1) in polar coordinates

I @(s=1,...,n) can be reduced to the normal fomm /5/

. & . % & p* sign p*
rj = 2v§1 R’VQV;‘ (ev‘) + r]- (r, &p), 9: == Z Z _‘!’rgj__.....y_.RiQ”/ (e‘*) + en+v (r, ) (1.4)
fme] jum]
rg = Yo (r, ), raq’u.=ma"a.+6a(r,(p), J=1...,9,v=1,..., poa=qg+1,...,n

q * q

RV’ == H rip"”, 9,‘:: 2 p:I(pl
lanl a1,

ij (8y%) = ay; cos B, + by; sin 0,*, Qi = dovj/dev‘

Fr=(ry ... r)y ®=(@y ..., %), Og(r, @)~ O (|| rjjs+ris)

q
Bnpa (@) = Y 7Oy, (1, @), 84 (r, @) ~ O (| r[*+07)
7

jmml
T:(r, @) ~O(f rjvsy, s =1,,.. 0, Qv (8 =0, if py*=0

A corresponding model system is obtained from (1.4) when
Cro@) =0y(r,g)=0,s=1,...,n v=4..., 1
It is assumed that

q
Q|0 v=1,...,p
Juml
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We denote (s is the Kronecker symbol)
“ o
Aﬁh = 21 SvBKvn - 255;" As. ny = S‘,B
V]

"
Angy, p = igl (TwiKip— Lvig)y  Anpv,nti= — Ty

Ky = [Y | B — @ —B)1 %]
A x )
R Pusign phQy (o —B) physign P?pQZé]
Lo V—:F [ g by kg -
2R, Q8  (@—B)Q (0*)]
S ) — v vivwe Vi Wy
w®h = v [!-;x % kg

g )
p*. sign p% Qi (B,%
T(or = R Y, B QH 08

=l 7
Sop® = Sup (85%), Tw’ = Twi (8,*)
Boh=4,....9~1, vi=4,...,p
Theorem 1. If the model system has a particular solution of the growing ray type
ry=kb (), b =20 k; >0, j=1,...,¢q, 8 =08 =const, v=4,...,p1
and
det Ay, — Iy, |50, 1=4,2,..., v,6=1,...,nFpn{v,06%¢q...,n

then the trivial solution of eguations system (l.l) is Liapunov-unstable.

The proof is similar to that of the theorem in /3/. In the general case Theorem 1 does
not help us to cbtain constructive conditions for Liapunov-instability; however, in certain
special cases {for instance, for a canonic system with third-order double resonance)the theorem
does yield the constructive conditions.

2. We consider the canonic system

- 8 v - a 4 .
p,g___’i;%_‘ﬂ., q.c_ﬂg;s),, 2y 0EE,, S=1,...,n (2.1)
4 3 \08(p 2 2, 2 H H 2.2)
H(p’Q}—T (= 4)°8(p,* + o, g% & Hy -+ Higa + .00 (2.
am=]

where H; is a homogeneocus polynomial of degree [, §, takes the value 1 or 2, so that the
guadratic form in (2.2) is indefinite; the llneanzea system does not have multiple eigenvalu-
es and relations (1.2) are fulfilled. With the aid of a polynomial cancnic transformation
taking (1.2) into account the Hamiltonian (2.2) in polar canonic variables can be reduced to
the normal form

n B
P= 8 0r+2 3 ARQY 64 +T* ) (2.3)

Qv (6y*) = ay cos 6,* -+ by sin 6,* = sinpy*, ay® + byt = 1 le — dQv/dev*y T* (r, lP) ~ O (" r “(k-u)/i)

3 ,
= (=1%o, po*= (D%, v=1,....p i=% ..., s=1,...,n
The model Hamiltonian is obtained from (2.3) when I* (r, ¢} = 0. From Theorem 1 follows

Theorem 2. If the canonic system with the model Hamiltonian has a particular solution
of the form
ry == k‘]b (t), b = 2bk1’, k_y>0,j =1, ... s q
P* = (n/2)sign 4y, E=4, ..., p
W= —(/2)signdn, n=p o+l p O< RS

(2.4)

and
det | due — Buff5=0, I=1,2, ..., v, e=1,...,n+pv, 65%g,...,n)
then the trivial solution of canonic system {(2.1) is Liapunov-unstable.

Here B
Apn "-—“21 SvaKyp—28pn, Ap ngnv=10
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g * |k
Anpv,8=0, Anpy npi=(— 1R 4| Z_"}J_’%:_‘j_l_

el !

Kyg = zﬁlf-‘ﬁ [l_gllp&l—(q—ﬂ)lptai]

. - GVR"]A, P* ("‘ﬁ)*

Sea == 2(=1 v v vl g Pyg

v @—B+HVe—p [,_ L k3 ]
U§=2v §=17-v-»l-lm oﬂ=1v n=l‘-0+1av}"
pvhxiy--~fq—'1y V,Z'=1,...,p.

Let us assume that the canonic system (2.1) has a third-order double rescnance and that
among its resonance relations if only there is at least one strong (i.e., leading the zero solu-
tion of the model system to instability /1/). We investigate the stability question in this
case by using the results in /2/ and in the present paper; to be precise, we study the follow-
ing stability properties of the trivial solution of canonic system (2.1): instability in the
second order because of the existence in the model system of particular solutions of the
growing ray type of form

Fuo= kb (), & = 2052, k, >0, w=1,...,3 (2.5)
=0, v=0+4+1....9 O<i<g

Pe* = (w/2)signdg, E=1,...,u,

Po* = — (W) signdn, n=po+1,..., 0

Y =02, =B+ ...,0 O<p<E<p; B>0)

and of form (2.4); Liapunov-instability; stability in the second order with respect to a part
of the variables.

We set up a table in which we enter the results of the stability investigations (suffic-
ient conditions) in all possible cases of the presence of a third-order double rescnance in
system (2.1). In the Table 1 the double rescnance (1.2) has been represented by the matrices

P‘="pvi." (V‘—:i, 2,7:177q)1A=IA1/A,‘

in (2.3) 4; corresponds to the i -th resonance relation; ! =1, 2,...; the asterisk in the
table signifies that the stability property specified holds for (<4 < oo; the dash signif-
ies that other investigation methods are needed to study the stability property specified.

If in the third-order double resonance (l.2) all resonance relations are weak, then the triv-
ial solution of canonic system (2.1) is stable in the second order (see /2/).

Example. We consider the stability problem for the relative equilibrium of a satellite
on a circular orxbit /6,7/. We investigate the stability for parameter values corresponding
to an intersection of the resonance curves

0y— 0 + 03 =0, w3—20,=0 (2.6)

in the region wherein only the necessary stability conditions are fulfilled in the plane &=
C/A, 8= BlA, where 4,B,C are the satellite's principal central moments of inertia (see /7,
2/). Computer calculations showed that the double resonance (2.6) is realized at the point
€,=0.912686. . . , §,=0.835888. . . . By normalization the Hamiltonian of the problem being examined can
be brought to form (2.3), where 4 =1.492993...<¥73. Since the double resonance (2.8) can be
written as M— M— M= 0, A, + 2,=0, from the tabular results presented (see No.2l) ic Zollows
that the relative equilibrium of the satellite on the circular orbit is Liapunov-unstable at
the point (eo; ) .

Note. All the results obtained in /2/ remain valid for the multiple resonances (1.2) con-
sidered in the present paper. We remark that the conditions in Theorems 1.2 and 2.2 of /2/
are only sufficient and not necessary.

The author thanks V. V. Rumiantsev for critical observations on this paper.
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Table 1
Instability in the Stabflity in the
» |Fom of the second order Liapunov second osder with
resonance | solution of | solution of |  jngtabjiity respect t0 a part
fam{2.5){fam (2.4) of the variables
111060
t 1 ocottt * ¢ * -
114000
2 | co0t4—1 * - - *
3 | so0n . a=1 | 4=t -
14400 - _
4 | 1e0~1—1 * A=1 =1
e | 14100 . - - .
° | 1004—1
6 14100 - . . _
00024
7 | 44100 . - — .
24
8 14—1C0 » — - *
00021
1110 - 1 _
o |i10, 1<A<e0 | 1<4<e
0 | 340 * | Vikace| Vicace -
a | 1110 - . 0<a< -
200—1 4 *‘/ .
saton 0<A<YE
13 u—iw . 0LA<Y2 A*V -
T+1
[ ] — _l + ]
1110
14 1002 hd =2 A=2 -
5 | 1110 . .
1002 =2 A=2 -
f—1—
16 1002 10 . A=2 A=2 —-—
17 ia10 . - _ .
2100
8| oozt * * * ~
19 | 2100 .
€021 - - .
o | 114 . 0<4<0
210 - AR2VIT3 -
24 | 411 1+1
210 = |04V T | 0<a<yT -
22 |1-i—t o s )
2i0 — VA4 04 -
93 | 210
;ﬁ’g * 0<CAY T | oAy -
2 10—2 . 5= 'V,§<A'<oo
2 VIA<»| 4 ViTFD|
?(\-210 — . 0< AL 00
ALVIGTT T
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