ON STABILITY IN THE PRESENCE OF MULTIPLE RESONANCE OF ODD ORDER

V. E. ZHAVNERCHIK

The stability of the trivial solution of an autonomous system of ordinary differential equations is investigated in the critical case of n pairs of pure imaginary roots when odd-order multiple resonance is present. All possible cases of the presence of a third-order double resonance are examined for a canonic system. The stability problem for the relative equilibrium of a satellite on a circular orbit is analyzed as an example.

1. We consider the differential equation system

$$x^{*} = Ax + X(x), \quad X(0) = 0, \quad x \in E_{2n}$$
 (1.1)

where A is a constant square matrix having only pure imaginary and distinct eigenvalues $\pm i\omega_*(\omega_*>0, s=1, \ldots, n)$, X(x) is a holomorphic vector-valued function whose expansion in powers of x begins with an mth-order form, m is an even number. We assume that system (1.1) has μ -ple internal resonance of order (m+1), i.e., all possible resonance relations of the form

$$\langle \Omega, P_{\mathbf{v}} \rangle = 0, \quad \mathbf{v} = 1, \dots, \mu$$

$$\Omega = (\omega_1, \dots, \omega_q), \quad P_{\mathbf{v}} = (p_{\mathbf{v}1}, \dots, p_{\mathbf{v}q}), \quad q \leq n$$

$$|P_{\mathbf{v}}| = \sum_{j=1}^{q} |p_{\mathbf{v}j}| = k, \quad k = m+1$$
(1.2)

are fulfilled, where P_v is an integral vector whose components do not contain a common factor. For definiteness we can take it that the first nonzero component of vector P_v is positive.

The stability problem for the trivial solution of system (1.1) was investigated in /1-3/ in the presence of μ -ple resonance (1.2) satisfying the condition

$$p_{\nu j}^{*} = (-1)^{\alpha_{\nu} + 3_{j}} p_{\nu j} \ge 0, \quad \nu = 1, \ldots, \mu, \quad j = 1, \ldots, q$$
(1.3)

for certain α_v , β_j taking value 1 or 2. Below we examine this same problem without constraints (1.3). A special case of such a problem was analyzed earlier in /4/. With the aid of a special nonlinear transformation taking (1.2) into account the system (1.1) in polar coordinates $r_a, \varphi_a (s = 1, ..., n)$ can be reduced to the normal form /5/

$$r_{j} = 2 \sum_{\nu=1}^{\mu} R_{\nu} Q_{\nu j}(\theta_{\nu}^{*}) + \Gamma_{j}(r, \phi), \qquad \theta_{\nu}^{*} = \sum_{i=1}^{\mu} \sum_{j=1}^{q} \frac{p_{\nu j}^{*} \operatorname{sign} p_{ij}^{*}}{r_{j}} R_{i} Q_{ij}'(\theta_{i}^{*}) + \Theta_{n+\nu}(r, \phi)$$
(1.4)

 $r_{\alpha} = \Gamma_{\alpha}(r, \varphi), \ r_{\alpha}\varphi_{\alpha} = \omega_{\alpha}r_{\alpha} + \Theta_{\alpha}(r, \varphi), \quad f = 1, \ldots, q, \ \nu = 1, \ldots, \mu, \ \alpha = q + 1, \ldots, n$

$$\begin{aligned} R_{\mathbf{v}}^{\mathbf{v}} &= \prod_{l=1}^{q} r_{l}^{j} p_{\mathbf{v}l}^{\mathbf{v}_{l}}; \quad \theta_{\mathbf{v}}^{\mathbf{v}} = \sum_{j=1}^{q} p_{\mathbf{v}_{j}}^{\mathbf{v}} \varphi_{j} \\ Q_{\mathbf{v}_{j}} \left(\theta_{\mathbf{v}}^{\mathbf{v}} \right) &= a_{\mathbf{v}_{j}} \cos \theta_{\mathbf{v}}^{\mathbf{v}} + b_{\mathbf{v}_{j}} \sin \theta_{\mathbf{v}}^{\mathbf{v}}, \quad Q_{\mathbf{v}_{j}}' = dQ_{\mathbf{v}_{j}}/d\theta_{\mathbf{v}}^{\mathbf{v}} \\ r &= (r_{1}, \ldots, r_{n}), \quad \varphi = (\varphi_{1}, \ldots, \varphi_{n}), \quad \Theta_{\alpha} \left(r, \varphi \right) \sim \mathcal{O} \left(|| r ||^{(k+1)/2} \right) \\ \Theta_{n+\mathbf{v}} \left(r, \varphi \right) = \sum_{j=1}^{q} \frac{1}{r_{j}} \Theta_{\mathbf{v}_{j}} \left(r, \varphi \right), \quad \Theta_{\mathbf{v}_{j}} \left(r, \varphi \right) \sim \mathcal{O} \left(|| r ||^{(k+1)/2} \right) \\ \Upsilon_{*} \left(r, \varphi \right) \sim \mathcal{O} \left(|| r ||^{(k+1)/2} \right), \quad s = 1, \ldots, n, \qquad Q_{\mathbf{v}_{j}} \left(\theta_{\mathbf{v}}^{\mathbf{v}} \right) \equiv 0, \quad \text{if} \quad p_{\mathbf{v}_{j}}^{\mathbf{v}} = 0 \end{aligned}$$

A corresponding model system is obtained from (1.4) when

$$\Upsilon_s(r, \varphi) = \Theta_v(r, \varphi) \equiv 0, s = 1, \ldots, n, v = 1, \ldots, \mu$$

It is assumed that

$$\sum_{j=1}^{q} |Q_{\nu j}| \neq 0, \quad \nu = 1, \ldots, \mu$$

^{*}Prikl.Matem.Mekhan., 44, No.6, 971-976, 1980

We denote $(\delta_{\beta h}$ is the Kronecker symbol)

$$A_{\beta h} = \sum_{\nu=1}^{L} S_{\nu\beta}^{*} K_{\nu h} - 2\delta_{\beta h}, \quad A_{\beta, n+\nu} = S_{\nu\beta}^{*}$$

$$A_{n+\nu, \beta} = \sum_{i=1}^{\mu} (T_{\nu i}^{*} K_{i\beta} - L_{\nu i\beta}), \quad A_{n+\nu, n+i} = -T_{\nu i}^{*}$$

$$K_{\nu\beta} = \frac{1}{2Vq-\beta} \left[\sum_{i=\beta+1}^{q} |P_{\nu i}^{*}| - (q-\beta)| P_{\nu\beta}^{*}| \right]$$

$$L_{\nu i\beta} = \frac{R_{i}^{\circ}}{Vq-\beta} \left[\sum_{l=\beta+1}^{q} \frac{P_{\nu l}^{*} \operatorname{sign} P_{il}^{*} Q_{il}^{*}}{k_{l}} - \frac{(q-\beta) P_{\nu\beta}^{*} \operatorname{sign} P_{i\beta}^{*} Q_{i\beta}^{*}}{k_{\beta}} \right]$$

$$S_{\nu\beta} (\theta_{\nu}^{*}) = \frac{2R_{\nu}^{\circ}}{(q-\beta+1)\sqrt{q-\beta}} \left[\sum_{l=\beta+1}^{q} \frac{Q_{\nu l} (\theta_{\nu}^{*})}{k_{l}} - \frac{(q-\beta) Q_{\nu \beta} (\theta_{\nu}^{*})}{k_{\beta}} \right]$$

$$T_{\nu i} (\theta_{i}^{*}) = R_{i}^{\circ} \sum_{j=1}^{q} \frac{P_{\nu j}^{*} \operatorname{sign} P_{ij}^{*} Q_{ij} (\theta_{i}^{*})}{k_{j}}$$

$$S_{\nu\beta}^{\circ} = S_{\nu\beta} (\theta_{\nu}^{*}), \quad T_{\nu i}^{\circ} = T_{\nu i} (\theta_{i}^{**})$$

$$\beta, h = 1, \ldots, q-1, \quad \nu, i = 1, \ldots, \mu$$

Theorem 1. If the model system has a particular solution of the growing ray type

$$\begin{aligned} r_{j} &= k_{j}b(t), \ b^{*} &= 2b^{k/2}, \ k_{j} > 0, \ j = 1, \dots, q, \\ det \parallel A_{v_{\sigma}} - l\delta_{v_{\sigma}} \parallel \neq 0, \ l = 1, 2, \dots, v \\ \text{or } s = 1, \dots, n + \mu \ (v, \, s \neq q, \dots, n) \end{aligned}$$

and

The proof is similar to that of the theorem in /3/. In the general case Theorem 1 does not help us to obtain constructive conditions for Liapunov-instability; however, in certain special cases (for instance, for a canonic system with third-order double resonance) the theorem does yield the constructive conditions.

2. We consider the canonic system

$$p_{s} = -\frac{\partial H(p,q)}{\partial q_{s}}, \quad q_{s} = \frac{\partial H(p,q)}{\partial p_{s}}, \quad p,q \in E_{n}, \quad s = 1, \dots, n$$
(2.1)

$$H(p,q) = \frac{1}{2} \sum_{s=1}^{n} (-1)^{\delta_s} (p_s^2 + \omega_s^2 q_s^2) + H_k + H_{k+1} + \dots$$
(2.2)

where H_i is a homogeneous polynomial of degree l, δ_i takes the value 1 or 2, so that the quadratic form in (2.2) is indefinite; the linearized system does not have multiple eigenvalues and relations (1.2) are fulfilled. With the aid of a polynomial canonic transformation taking (1.2) into account the Hamiltonian (2.2) in polar canonic variables can be reduced to the normal form

$$\Gamma = \sum_{s=1}^{n} \lambda_s r_s + 2 \sum_{\nu=1}^{\mu} A_{\nu} R_{\nu} Q_{\nu'}(\theta_{\nu}^*) + \Gamma^*(r, \varphi)$$
(2.3)

 $Q_{\mathbf{v}}(\theta_{\mathbf{v}}^{*}) = \alpha_{\mathbf{v}}\cos\theta_{\mathbf{v}}^{*} + b_{\mathbf{v}}\sin\theta_{\mathbf{v}}^{*} \equiv \sin\psi_{\mathbf{v}}^{*}, a_{\mathbf{v}}^{2} + b_{\mathbf{v}}^{2} = 1, \qquad Q_{\mathbf{v}}' = dQ_{\mathbf{v}}/d\theta_{\mathbf{v}}^{*}, \quad \Gamma^{*}(r, \varphi) \sim O(||r||^{(k+1)/2})$

$$\lambda_s = (-1)^{\delta_s} \omega_s, \quad p_{vj}^* = (-1)^{\delta_j} p_{vj}, \qquad v = 1, \ldots, \mu, \quad j = 1, \ldots, q, \quad s = 1, \ldots, n$$

The model Hamiltonian is obtained from (2.3) when $\Gamma^*(r, \phi) \equiv 0$. From Theorem 1 follows

Theorem 2. If the canonic system with the model Hamiltonian has a particular solution of the form $r_{i} = k h (t) h^{2} = 2h^{k/2} k \ge 0 \quad i = 1$

$$r_{j} = k_{j} \delta(t), \ b^{-} = 2b^{\kappa/2}, \ k_{j} > 0, \ j = 1, \dots, q$$

$$\psi_{\xi}^{*} = (\pi/2) \operatorname{sign} A_{\xi}, \quad \xi = 1, \dots, \mu_{0}$$

$$\psi_{\eta}^{*} = -(\pi/2) \operatorname{sign} A_{\eta}, \quad \eta = \mu_{0} + 1, \dots, \mu \quad (0 \le \mu_{0} \le \mu)$$
(2.4)

and

 $\det \|A_{u\sigma} - l\delta_{u\sigma}\| \neq 0, \ l = 1, 2, \ldots, \quad v, \ \sigma = 1, \ldots, n + \mu (v, \ \sigma \neq q, \ldots, n)$

then the trivial solution of canonic system (2.1) is Liapunov-unstable. Here

$$A_{\beta h} = \sum_{\nu=1}^{\mu} S_{\nu\beta}^{\nu} K_{\nu h} - 2\delta_{\beta h}, \quad A_{\beta, n+\nu} = 0$$

V. E. Zhavnerchik

$$\begin{split} A_{n+\mathbf{v}, \beta} &= 0, \quad A_{n+\mathbf{v}, n+i} = (-1)^{\sigma_{i}+1} R_{i}^{\circ} |A_{i}| \sum_{j=1}^{q} \frac{p_{\mathbf{v}_{j}}^{*} |P_{ij}^{*}|}{k_{j}} \\ K_{\mathbf{v}\beta} &= \frac{1}{2\sqrt{q-\beta}} \left[\sum_{l=\beta+1}^{q} |P_{\mathbf{v}l}^{*}| - (q-\beta) |P_{\mathbf{v}\beta}^{*}| \right] \\ S_{\mathbf{v}\beta}^{*} &= \frac{2(-1)^{\sigma_{\mathbf{v}}} R_{\mathbf{v}}^{\circ} |A_{\mathbf{v}}|}{(q-\beta+1)\sqrt{q-\beta}} \left[\sum_{l=\beta+1}^{q} \frac{p_{\mathbf{v}_{l}}^{*}}{k_{l}} - \frac{(q-\beta) p_{\mathbf{v}\beta}^{*}}{k_{\beta}} \right] \\ \sigma_{\xi} &= 2, \quad \xi = 1, \dots, \mu_{0}, \quad \sigma_{\eta} = 1, \quad \eta = \mu_{0} + 1, \dots, \mu \\ \beta, \quad h = 1, \dots, q-1, \quad \nu, \quad i = 1, \dots, \mu \end{split}$$

Let us assume that the canonic system (2.1) has a third-order double resonance and that among its resonance relations if only there is at least one strong (i.e., leading the zero solution of the model system to instability /1/). We investigate the stability question in this case by using the results in /2/ and in the present paper; to be precise, we study the following stability properties of the trivial solution of canonic system (2.1): instability in the second order because of the existence in the model system of particular solutions of the growing ray type of form

$$\begin{aligned} r_{u} &= k_{u}b(t), \ b^{*} = 2b^{k/2}, \ k_{u} > 0, \ u = 1, \dots, \bar{q} \end{aligned} \tag{2.5} \\ r_{v} &= 0, \ v = \bar{q} + 1, \dots, q \quad (0 < \bar{q} < q) \\ \psi_{\xi}^{*} &= (\pi/2) \ \text{sign} \ A_{\xi}, \ \xi = 1, \dots, \mu_{0} \\ \psi_{\eta}^{*} &= -(\pi/2) \ \text{sign} \ A_{\eta}, \ \eta = \mu_{0} + 1, \dots, \bar{\mu} \\ \psi_{\xi}^{*} &= \pm \pi/2, \ \zeta = \bar{\mu} + 1, \dots, \mu \quad (0 \leqslant \mu_{0} \leqslant \bar{\mu} < \mu; \ \bar{\mu} > 0) \end{aligned}$$

and of form (2.4); Liapunov-instability; stability in the second order with respect to a part of the variables.

We set up a table in which we enter the results of the stability investigations (sufficient conditions) in all possible cases of the presence of a third-order double resonance in system (2.1). In the Table 1 the double resonance (1.2) has been represented by the matrices

$$P^* = || p_{vj}^* || (v = 1, 2; j = 1, ..., q), A = |A_1/A_2|$$

in (2.3) A_i corresponds to the *i*-th resonance relation; l = 1, 2, ...; the asterisk in the table signifies that the stability property specified holds for $0 < A < \infty$; the dash signifies that other investigation methods are needed to study the stability property specified. If in the third-order double resonance (1.2) all resonance relations are weak, then the trivial solution of canonic system (2.1) is stable in the second order (see /2/).

Example. We consider the stability problem for the relative equilibrium of a satellite on a circular orbit /6,7/. We investigate the stability for parameter values corresponding to an intersection of the resonance curves

$$\omega_{\mathbf{3}} - \omega_{\mathbf{3}} + \omega_{\mathbf{1}} = 0, \quad \omega_{\mathbf{3}} - 2\omega_{\mathbf{1}} = 0 \tag{2.6}$$

in the region wherein only the necessary stability conditions are fulfilled in the plane $\varepsilon = C/A$, $\delta = B/A$, where A, B, C are the satellite's principal central moments of inertia (see /7, 2/). Computer calculations showed that the double resonance (2.6) is realized at the point

 $\epsilon_0 = 0.912686..., \delta_0 = 0.835888...$ By normalization the Hamiltonian of the problem being examined can be brought to form (2.3), where $A = 1.492993... < \sqrt{3}$. Since the double resonance (2.6) can be written as $\lambda_3 - \lambda_2 - \lambda_1 = 0, \lambda_3 + 2\lambda_1 = 0$, from the tabular results presented (see No.21) it follows that the relative equilibrium of the satellite on the circular orbit is Liapunov-unstable at the point (ϵ_0 ; δ_0).

Note. All the results obtained in /2/ remain valid for the multiple resonances (1.2) considered in the present paper. We remark that the conditions in Theorems 1.2 and 2.2 of /2/ are only sufficient and not necessary.

The author thanks V. V. Rumiantsev for critical observations on this paper.

		Instability in the		Lionun eu	Stability in the
34	Form of the	adjustice of adjustice of		Liapunov	second order with
	resonance	form (2, 5)	form (2,4)	instability	of the variables
· · · · ·	<u> </u>	1			
í	111000 000111	•	•	•	_
2	1110C0 C0011-1	•	-		•
3	11100 10011	•	A = 1	A = 1	-
4	11100 100-1-1	•	A = 1	A = 1	-
5	11100 1001—1	•	-		•
6	11100 00021	•	•	٠	_
7	11100 00021	•	-	-	•
8	11-100 00021	•	-	-	•
8	1110 1-101	-	1 <a<∞< td=""><td>1<a<∞< td=""><td>-</td></a<∞<></td></a<∞<>	1 <a<∞< td=""><td>-</td></a<∞<>	-
10	1110 2001	•	V2 <a<∞< td=""><td>$\sqrt{2} < A < \infty$</td><td> -</td></a<∞<>	$\sqrt{2} < A < \infty$	-
11	1110 2001	-	•	$A \neq 1/\frac{2}{2}$	-
12	1-1-10				
13	11-10 2001	•	0 <a<v2< td=""><td>$A \neq 1 \sqrt{\frac{2}{\frac{2}{1-1}}}$</td><td>-</td></a<v2<>	$A \neq 1 \sqrt{\frac{2}{\frac{2}{1-1}}}$	-
		•	-		•
14	1110 1002	•	A = 2	A = 2	-
15	1110 100-2	•	A = 2	A == 2	_
16	1-1-10 1002	•	A = 2	A = 2	
17	11-10	•	-	-	•
18	2100 0021	•	•	*	
19	2100 C021	•	-		•
20	111 2—10	-	•	$A \neq \frac{2\sqrt{l+2}}{\sqrt{l+2}}$	-
21	1-11 210	-	0 <a<v3< td=""><td>$\frac{l+1}{0 < A < \sqrt{3}}$</td><td></td></a<v3<>	$\frac{l+1}{0 < A < \sqrt{3}}$	
22	1-1-1 210	-	0 <a<1< td=""><td>0<a<1< td=""><td></td></a<1<></td></a<1<>	0 <a<1< td=""><td></td></a<1<>	
2 3	210 102	•	$0 < A < \sqrt{2}$	$0 < A < \sqrt{2}$	
24	210 10-2	•	$V^{\overline{2}} < A < \infty$	V 2 <a<∞< td=""><td></td></a<∞<>	
25	2-10 102	-	•	$A \neq y 2(l+1)$ $0 < A < \infty$	_
	}			л₽¥ 4((+1)	

REFERENCES

- KUNITSYN A.L. and MEDVEDEV S.V., On stability in the presence of several resonances. PMM Vol.41, No.3, 1977.
- 2. ZHAVNERCHIK V.E., On the stability of autonomous systems in the presence of serveral resonances. PMM Vol.43, No.2, 1979.
- ZHAVNERCHIK V.E., On instability in the presence of several resonances. PMM Vol.43, No. 6, 1979.
- 4. KHAZINA G.G., On the problem of interaction of resonances. PMM Vol.40, No.5, 1976.
- BRIUNO A.D., Analytical form of differential equations. Tr. Mosk. Mat. Obshch., Vol.25, 1971.
- 6. MARKEEV A.P. and SOKOL'SKII A. G., On the stability problem for the relative equilibrium of a satellite on a circular orbit. Kosmich. Issled., Vol.13, No.2, 1975.
- BELETSKII V.V., The Motion of a Satellite Relative to the Center of Mass in a Gravitational Field. Moscow, Izd. Mosk. Gos. Univ., 1975.

Translated by N.H.C.